
WristSnoop: Smartphone PINs Prediction

Using Smartwatch Motion Sensors

Allen Sarkisyan

Applied Mathematics

Cal State Northridge (CSUN)

Northridge, USA

Allen.sarkisyan.860@my.csun.edu

Ryan Debbiny

Computer Science

Cal State Northridge (CSUN)

Northridge, USA

ryan.debbiny.575@my.csun.edu

Ani Nahapetian

Computer Science

Cal State Northridge (CSUN)

Northridge, USA

ani@csun.edu

Abstract— Smartwatches, with motion sensors, are becoming

a common utility for users. With the increasing popularity of

practical wearable computers, and in particular smartwatches,

the security risks linked with sensors on board these devices have

yet to be fully explored. Recent research literature has

demonstrated the capability of using a smartphone’s own

accelerometer and gyroscope to infer tap locations; this paper

expands on this work to demonstrate a method for inferring

smartphone PINs through the analysis of smartwatch motion

sensors. This study determines the feasibility and accuracy of

inferring user keystrokes on a smartphone through a smartwatch

worn by the user. Specifically, we show that with malware

accessing only the smartwatch’s motion sensors, it is possible to

recognize user activity and specific numeric keypad entries. In a

controlled scenario, we achieve results no less than 41% and up

to 92% accurate for PIN prediction within 5 guesses.

Keywords—Wearable computing; mobile security; PIN

prediction; keystroke inference; mobile malware; smartwatches.

I. INTRODUCTION

Smartwatches are becoming popular items in the wearable
technologies market, and thus opening new channels for
malware attacks. In this paper we examine the feasibility of
extracting personal identification numbers (PINs) entered on a
smart phone, using only motion sensor information captured,
via a malicious app, from a wrist-worn smart watch. PINs are
commonly used for authentication purposes on smart phones,
including for unlocking smart phones, for accessing voicemail,
and for access banking accounts using ATM PINs, thus making
them attractive targets for malicious agents. They involve the
user tapping one of 10 digits (0-9) in the correct multiple digit
sequence. By random entry, a malicious agent would have a 1
in 10,000 chance to guess a four-digit PIN.

Smartphones have the capability to log motion, enabling
the possibility reliable predictions of user inputs and actions.
The motion sensors often provide acceleration and rotation
information which is plentiful for inferring the smartphone
four-digit PIN and pattern passwords based on a few seconds
of data collection [1]. With the recent addition of the
smartwatch to the user’s list of personal devices, more

information can be gained and utilized than ever before for
motion sensor side-channel attacks. This paper attempts to
demonstrate a method for inferring smartphone PINs via the
motion sensor logs of a wrist-worn vulnerable smartwatch.

Fig. 1: A demonstration of PIN entry with a smartphone
while wearing the smartwatch.

In our experiments, a user wore a smartwatch on the left
hand, held a smartphone in the left hand, and entered PINs with
his thumb using the same hand. A demonstration of the method
can be seen in Figure 1. A sequence of digits was tapped on the
smartphone, simulating a typical PIN entry by the user. Motion
sensor readings of the smartwatch were collected alongside the
digits being pressed from the smartphone, and the timestamps
for each data point to match the two datasets into sensor-label
pairs. A training set of data was aggregated through this
process to model the motion the user employs to tap specific
numeric PIN labels on the smartwatch for the purpose of
inferring them in a test set.

Random forest classification was applied to predict PINs
from unlabeled data points in 21 data sets from a single user
across multiple sessions, simulating a side-channel PIN attack.
For each set of four-digit taps, the model was given 5 tries at
predicting the PIN correctly before moving onto another PIN.
After several hundred trials, the results were gathered to
examine the performance of the model. After applying the
Savitzky-Golay filter for data smoothing, the accuracy for PIN

978-1-4673-6802-5/15/$31.00 ©2015 IEEE 2015 IEEE International Workshop on Information Forensics and Security (WIFS)

prediction varied across the different datasets allocated, with
prediction accuracy reaching 92% in the best dataset and 41%
in the worst dataset.

II. ATTACK MODEL

This paper examines the attack scenario where malware
accessing a smartwatch is used to determine a PIN entered on
the user’s smartphone. The attack assumes a user is wearing a
smartwatch paired with a smartphone, where PINs are entered
via touch screen taps.

Malicious software installed on the devices, as a
smartwatch app, will monitor the smartwatch’s motion sensors
and transmit (with some possible filtering) the data to the
smartphone, which will then relay the information via a mobile
data or WiFi connection to a remote site for data processing
and PIN cracking.

Some assumptions regarding the attack include the
following:

 The user enters PIN information using the same
hand that carries the smartwatch. This attack
method could be complimented with an existing
method of smartphone PIN prediction such as [1]
[2] [3] and [4] for boosting classification accuracy
and reliability.

 Either the victim’s smartphone or smartwatch is
able to send data (< 100KB in total size) via the
internet to the attacker servers for analysis.

 The malicious software will be installed onto the
victim’s smartwatch, perhaps disguised as a
harmless smartwatch application.

For Android devices, the use of the accelerometer
and gyroscope does not require permission from
the user [5].

 The attacker can determine the approximate time
interval at which the user is entering a PIN onto
the smartwatch. This event can be detected
utilizing a classification algorithm to approximate
the time interval for the handling of the phone
during PIN entry.

In conducting this analysis, a random forest
classifier is used to infer the tapped PINs based off
of the unlabeled sensor data collected from the
smartwatch during a certain interval of time where
the user has tapped the screen for PIN entry.

III. RELATED WORK

Previous work has examined the leakage of sensitive data
via side-channel attacks on mobile devices that access the GPS
and other location sensors [6], the camera [7], bioimpedance
differences between people [8], and the movement of the
phone from taps [2]. More recently, researchers have looked at
using the pervasiveness of the mobile device to determine
environmental information, notably using smartphone’s
microphone [9] and accelerometer [10].

Specifically, in terms of using motion sensors on the
smartphone, TouchLogger achieved 70% accuracy in inference
of the number pad on a smartphone using motion and
orientation side channel attacks [3]. ACCessory was able to
crack six character passwords using only the accelerometer of
the phone [4]. Trojan software designed by the authors of
TapLogger was able to classify a user’s activity, often with
more than 90% accuracy, on the number pad of a smartphone
using the onboard accelerometer and gyroscope [2]. A more
recent study [11] was conducted to demonstrate the feasibility
of capturing keystrokes using smartwatch motion.

To the best of our knowledge this is the first work looking
at smartphone PIN detection using user-worn smartwatches.
Wrist-mounted sensors and/or smartwatch gesture
classification has been used previously in other applications,
such as for smoking gesture detection [12] and gestured
alphabetic character classification [13].

IV. DATA COLLECTION

Approximately 100,000 sensor records were collected with
a single user for a 2-3 minute session across 21 sessions. The
user wore the smartwatch on the left hand while holding the
smartphone in the left hand while sitting down. The left thumb
was used for the typing on the smartphone numeric pin pad.
The smartphone application used in the testing shown in Figure
2 simulates a typical Android smartphone PIN layout. A
Samsung Galaxy S5 smartphone paired alongside a Samsung
Galaxy Gear Live smartwatch were used in all the data
collection.

Fig. 2: A screen shot of the Android application PIN entry
screen used for the data collection.

To avoid iterating through all 10,000 possible combinations
with a 4-digit PIN, the following number sequences were
tapped to cover all possible PIN pairs: (1,1), (1,2), (1,3), … ,
(1,8), (1,9), (1,0), (2,1), (2,2), … , (2,9), (2,0), (3,1), … , (3,0),
… , (0,9), (0,0). Each tuple represents two taps in order, and
each tuple is followed by the previous tuple sequence. For
example, the first 6 labels tapped are 1, 1, 1, 2, 1, 3.

This method ensures that all label taps are gathered with all
possible following and prior labels. The sensors are thus
gathering the change in motion for all possible PIN
combinations with 100 unique tuples. The result of one

collection of the full set of tuples is about 200 taps (with
minimal human error missing a few taps and including some
extra taps).

A total of 21 datasets were gathered with a few including
up to 3 iterations of the cycle of tuples and with the majority
with 1 cycle.

The data gathered directly from the smartwatch included
the x,y, and z-axes of the accelerometer (without gravity), x,y,
and z-axes of the gyroscope, and x,y, and z-axes of the rotation
vector. Both the smartwatch and smartphone were programmed
to collect timestamp data: the smartphone to collect the times
of pressing and releasing labels, and the smartwatch for each
recorded sensor reading.

The smartwatch sensor data was transmitted to the
smartphone and written into CSV files at the touch of the ”OK”
button. The attack model thus assumes that the malicious
software can detect the approximate beginning and end of the
PIN entry to cut off extra noise. The sensors were sampled at
rate of 0.5KHz, with samples collected at approximately 20-30
records on average per tap, or in other words 80-120 records in
a 4-tap interval.

V. FEATURE SELECTION

The method for collecting data to train the classifier
involved collecting sensor data from the smartwatch and the
label data from the smartphone. The sets of data were merged
in such a way that the labels of the smartphone were applied to
the records of the smartwatch by matching the timestamp
interval of the user’s taps. The labeling also included a null
state denoted as -1 to indicate sensor readings during periods
without taps i.e. the time interval between one tap and another.

TABLE I: FEATURES EXPLORED FOR PIN VALUE CLASSIFICATION

As shown in Figure 3, using random forest tree feature
selection, the most important features in the dataset for
predicting the class labels were the original sensor values. The

feature sets were tested separately to compare the results of the
full feature set versus the subset of features chosen by the
random forest selection. Table II shows the performance of the
models for comparison.

Further features were created from the original dataset to
include the changes in values across each axis of each sensor
reading, the magnitude of each sensor reading, and the product
of each possible pair of magnitudes. The final column space
included the features listed in Table I.

Fig. 3: Random forest tree feature importance and selection

VI. APPROACH

A. Model Selection

Although several models were examined, the random forest
classifier proved to have the best performance across the
datasets for accuracy, precision, and recall. The classifier was
trained with 150 trees using entropy as the criterion for
information gain, and was tested with 5-fold cross validation to
ensure against overfitting.

It was shown, as in the tree selection Table II, that the best
feature set excluded the delta and product creations. The final
model thus excluded those features in PIN predictions.

The model was further improved by applying the Savitzky-
Golay filter to the dataset for noise reduction. The classifier
was trained on both the original sensor data and the filtered
data to examine the differences in performance. The model’s
precision score as shown in Table III was improved after
filtering, and so the method of smoothing was adopted for PIN
prediction.

TABLE II. RANDOM FOREST CLASSIFICATION MODEL PERFORMANCE USING

150 TREES FOR BOTH FILTERED AND NON-FILTERED DATASETS, AND FOR FULL-
FEATURES AND SELECTED-FEATURES. TESTED WITH 5-FOLD CROSS-
VALIDATION.

TABLE III. PIN PREDICTION RESULTS FROM RUNNING 100 TRIALS AT 5 TIMES

FOR EACH DATASET, WITHOUT DELTA OR PRODUCT FEATURES. TESTED WITH

5-FOLD CROSS-VALIDATION.

B. Pin Prediction

Due to the large class imbalance between the active states
(labels 0-9) and the null state (non-tap event), classification of
the states often results in many more predictions of the null
state than any other active state. This outcome was utilized as
an advantage for the PIN prediction process. By predicting
labels for each sensor reading (as opposed to a sequence), we
discovered a redundant logic in the classification that boosted
prediction accuracy. By randomly selecting an interval of 4
taps (a typical PIN) from the dataset, we were able to make
predictions on each sensor reading. The result appeared as a list
of about 120 class label predictions (about 30 data points
during the interval of any single tap), and as expected there
were many ’-1’ (null state) predictions. After removing the null
state predictions, what was left was often a list of several
repeating class label predictions.

An example output after the removal of null state
predictions is as follows:

(1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 4, 4, 5,
5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 2, 6, 6, 6, 6)

By examining the mode of the quartiles, we can accurately
predict the PIN for a 4-tap interval, even in the presence of
errors. For example, the above list would have an output of (1,
3, 5, 6) as the predicted PIN. This method works well because
misclassifications often result in null states, as opposed to
active states.

C. Null-Active State Prediction

An exploration was made into the question of whether the
active (labels 0-9) and null (-1) states could be clustered, and
whether such clustering would result in or provide an accurate
method for predicting future labels on this binary measure.

Using k-means clustering on a train-test split of the dataset
(test size of 20% holdout), it was found to be the worst
measure among several classifiers, alongside logistic

regression at about a 50-50 chance of correctly classifying null
or active state labels.

Fig. 4: Original sensor data binary classification ROC plot for

null-active state prediction.

Fig. 5: Savitzky-Golay filtered binary classification ROC plot

for null-active state prediction.

The models were run on both the original dataset and for

the filtered one to inspect the differences. As shown in Figures
4 and 5, the receiver operating curve (ROC) plots show the
accuracy of each model as the area under the curve (AUC)
score, and their corresponding true positive and false positive
rates. The random forest classifier (150 trees using entropy as
the criterion for information gain) performed the best, followed
by the k-nearest neighbors classifier (5 neighbors). Although
the k-nearest neighbors classifier did not perform well for PIN
prediction, it is useful for such binary classifications.

The final model did not rely on the use of the binary
classification as the probability for correct classification
through two models of first classifying null-active and then
classifying within the active states was lower than simply using
a single classifier on the full class-selection range. The final
model was chosen as the random forest classifier, trained to
classify across all states.

VII. RESULTS

Using the random forest model as a form of feature
selection (see Figure 3), we found that the acceleration in the x-
axis of the smartwatch proved to be the most relevant feature
for predicting class labels. It further followed that the other
accelerometer axes were all more valuable than the gyroscope
sensor readings, which then followed the rotation vector. The
creation of further features was not very helpful with boosting
the performance of the model as seen in Table II.

The model was also run with the first two principal
components using principal component analysis (PCA), it
however performed worse than the original feature set. It is
worth noting that the random forest model demonstrated that
the PCA features of the least importance among the full feature
set, and thus was left out of the analysis. This paper relied on
using PCA plots for visually representing the distinction
between active and null states of the data, to find a way for
better separation of the data points. The plots confirm the
difficulty in separating the classes, but it also points to the
difficulty in creating a more uniform dataset. Due to the bias
gained from training from only one user’s wrist, the PCA plots
show sets of clusters forming. In plots containing fewer
concatenations of datasets, the clusters become more visible.

The variance explained ratio given by the principal
components (see Fig. 6) is expected, and typical for PCA. The
majority of the variance (about 65%) can be explained with the
first two principal components, so what we see in the PCA plot
is the best visualization for separation. The resulting PIN
predictions (Table III) shown for a single user’s wrist are
optimistic as they overfit one user, and it is expected that the
PCA plot for multiple users will contain fewer visible cluster
separations and a more blurred separation between active and
null states.

The model was trained on the full dataset using a train-test
split with a testing size of 20% using the random forest
classifier (150 trees, entropy criterion). It was tested on each
dataset individually by predicting 5 sets of 100 PINs.

For each prediction, the model makes at most 5 unique
guesses for the PIN to simulate a realistic password attack. The
reasoning for this is that most devices are configured to lock
the PIN entry screen at 5 incorrect guesses.

The different guesses are created by examining the
threshold for probabilities of class labels by the random forest
classifier model. For each prediction, the model examines the
probabilities for class label assignment across each label and
appropriates the one with the highest value.

For further guesses, the next-best probabilities are used to
substitute the best predicted values. This way, if for one
prediction, two class labels are differing by a small probability
in the model, that prediction will be the one to swap to the
next-best guess of a class label. This method preserves the
confident guesses and swaps out the questionable ones, often
resulting in success within 4 guesses. This process is taken in
steps of incremental 10% threshold limit values until a unique
new guess is created and tried. If the model fails to predict the
PIN value correctly, it is returned as a 0 (otherwise a 1 for
success).

Fig. 6. PCA plot and PCA explained variance ratio for full

feature set

The results in Table III show the averages and standard

deviation for these 5 sets, for both the original dataset and the
filtered dataset. The scores represent percentage accuracy
measures, and are a good reflection of the performance since
many scores have low variance across the 5 tests. If for
example the score is 0.90, then the model was able to on
average predict 90 out of 100 PINs.

For the majority of the datasets, the two models (unfiltered
versus filtered) performed with similar accuracy given the
range of uncertainty for each set. The interesting distinction of
the Savitzky-Golay filtered model is that it tended to have
greater accuracy for two datasets, 5 and 13, beyond the range
of the standard deviation. It is a minor note, but reflective of
the boosted precision of the cross-validated scores in Table II.

The model was also tested on unseen data, with results
showing poor classification. Due to the wide range of initial
starting positions for the user, and the inherent differences in
wrist motion from one session to another, the random forest
classifier was not able to classify the data points correctly. This
is likely due to the classifier not being trained on a particular
motion before, which is very likely given that the user was
only tested across 21 sessions. It is expected that in an
extended study with a diverse user group and several million
data points, the classifier would fare far better with unseen data
classification.

VIII. CONCLUSION

In this paper, the feasibility of smartwatch motion sensor
attacks to extract PINs entered on smartphones was
demonstrated. We looked at the scenario where the user is
wearing a smartwatch and holding a smartphone to enter
sensitive numeric data. In a controlled scenario, at least 41%
accuracy is achieved with the smartwatches’ motion sensors
for PIN prediction within 5 guesses.

REFERENCES

[1] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of

accelerometer side channels on smartphones,” in Proceedings of the
28th Annual Computer Security Applications Conference. ACM, 2012,
pp. 41–50.

[2] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors,” in
Proceedings of the fifth ACM conference on Security and Privacy in
Wireless and Mobile Networks. ACM, 2012, pp. 113–124.

[3] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion.” in HotSec, 2011.

[4] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory:
password inference using accelerometers on smartphones,” in
Proceedings of the Twelfth Workshop on Mobile Computing Systems &
Applications. ACM, 2012, p. 9.

[5] “Android Developer API Guides security permissions,”
http://developer.android.com/guide/topics/security/permissions.html,
accessed: 2015-06-25.

[6] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J.
Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information flow
tracking system for realtime privacy monitoring on smartphones,”ACM
Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[7] M. Backes, M. Durmuth, and D. Unruh, “Compromising reflections -or -
how to read lcd monitors around the corner,” in Security and Privacy,
2008. SP 2008. IEEE Symposium on. IEEE, 2008, pp. 158–169.

[8] C. Cornelius, J. Sorber, R. Peterson, J. Skinner, R. Halter, and D. Kotz,
“Who wears me? bioimpedance as a passive biometric,” in Proc. 3rd
USENIX Workshop on Health Security and Privacy, 2012.

[9] M. Backes, M. D¨urmuth, S. Gerling, M. Pinkal, and C. Sporleder,
“Acoustic side-channel attacks on printers.” in USENIX Security
Symposium, 2010, pp. 307–322.

[10] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iphone:
decoding vibrations from nearby keyboards using mobile phone
accelerometers,”in Proceedings of the 18th ACM conference on
Computer and communications security. ACM, 2011, pp. 551–562.

[11] H. Wang, T. Tsung-Te Lai, and R. R. Choudhury, “Mole: Motion leaks
through smartwatch sensors,” in Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking. ACM,
2015, pp. 155–166.

[12] A. Parate, M.-C. Chiu, C. Chadowitz, D. Ganesan, and E. Kalogerakis,
“Risq: Recognizing smoking gestures with inertial sensors on a
wristband,” in Proceedings of the 12th annual international conference
on Mobile systems, applications, and services. ACM, 2014, pp. 149–
161.

[13] D. Moazen, S. Sajjadi, A. Nahapetian. “AirDraw: Leveraging Smart
Watch Motion Sensors for Mobile Human Computer Interactions,” in
Proceedings of the 12th annual internationl Consumer Communications
and Networking Conference (CCNC), IEEE, 2016.

