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Abstract— Smartwatches, with motion sensors, are becoming 

a common utility for users. With the increasing popularity of 

practical wearable computers, and in particular smartwatches, 

the security risks linked with sensors on board these devices have 

yet to be fully explored. Recent research literature has 

demonstrated the capability of using a smartphone’s own 

accelerometer and gyroscope to infer tap locations; this paper 

expands on this work to demonstrate a method for inferring 

smartphone PINs through the analysis of smartwatch motion 

sensors. This study determines the feasibility and accuracy of 

inferring user keystrokes on a smartphone through a smartwatch 

worn by the user. Specifically, we show that with malware 

accessing only the smartwatch’s motion sensors, it is possible to 

recognize user activity and specific numeric keypad entries. In a 

controlled scenario, we achieve results no less than 41% and up 

to  92% accurate for PIN prediction within 5 guesses.  

Keywords—Wearable computing; mobile security; PIN 

prediction; keystroke inference; mobile malware; smartwatches. 

I. INTRODUCTION 

Smartwatches are becoming popular items in the wearable 
technologies market, and thus opening new channels for 
malware attacks. In this paper we examine the feasibility of 
extracting personal identification numbers (PINs) entered on a 
smart phone, using only motion sensor information captured, 
via a malicious app, from a wrist-worn smart watch. PINs are 
commonly used for authentication purposes on smart phones, 
including for unlocking smart phones, for accessing voicemail, 
and for access banking accounts using ATM PINs, thus making 
them attractive targets for malicious agents. They involve the 
user tapping one of 10 digits (0-9) in the correct multiple digit 
sequence. By random entry, a malicious agent would have a 1 
in 10,000 chance to guess a four-digit PIN. 

Smartphones have the capability to log motion, enabling 
the possibility reliable predictions of user inputs and actions. 
The motion sensors often provide acceleration and rotation 
information which is plentiful for inferring the smartphone 
four-digit PIN and pattern passwords based on a few seconds 
of data collection [1]. With the recent addition of the 
smartwatch to the user’s list of personal devices, more 

information can be gained and utilized than ever before for 
motion sensor side-channel attacks. This paper attempts to 
demonstrate a method for inferring smartphone PINs via the 
motion sensor logs of a wrist-worn vulnerable smartwatch. 

 

Fig. 1: A demonstration of PIN entry with a smartphone 
while wearing the smartwatch. 

In our experiments, a user wore a smartwatch on the left 
hand, held a smartphone in the left hand, and entered PINs with 
his thumb using the same hand. A demonstration of the method 
can be seen in Figure 1. A sequence of digits was tapped on the 
smartphone, simulating a typical PIN entry by the user. Motion 
sensor readings of the smartwatch were collected alongside the 
digits being pressed from the smartphone, and the timestamps 
for each data point to match the two datasets into sensor-label 
pairs. A training set of data was aggregated through this 
process to model the motion the user employs to tap specific 
numeric PIN labels on the smartwatch for the purpose of 
inferring them in a test set. 

Random forest classification was applied to predict PINs 
from unlabeled data points in 21 data sets from a single user 
across multiple sessions, simulating a side-channel PIN attack. 
For each set of four-digit taps, the model was given 5 tries at 
predicting the PIN correctly before moving onto another PIN. 
After several hundred trials, the results were gathered to 
examine the performance of the model. After applying the 
Savitzky-Golay filter for data smoothing, the accuracy for PIN 

978-1-4673-6802-5/15/$31.00 ©2015 IEEE 2015 IEEE International Workshop on Information Forensics and Security (WIFS)



prediction varied across the different datasets allocated, with 
prediction accuracy reaching 92% in the best dataset and 41% 
in the worst dataset. 

II. ATTACK MODEL 

This paper examines the attack scenario where malware 
accessing a smartwatch is used to determine a PIN entered on 
the user’s smartphone. The attack assumes a user is wearing a 
smartwatch paired with a smartphone, where PINs are entered 
via touch screen taps. 

Malicious software installed on the devices, as a 
smartwatch app, will monitor the smartwatch’s motion sensors 
and transmit (with some possible filtering) the data to the 
smartphone, which will then relay the information via a mobile 
data or WiFi connection to a remote site for data processing 
and PIN cracking. 

Some assumptions regarding the attack include the 
following: 

 The user enters PIN information using the same 
hand that carries the smartwatch. This attack 
method could be complimented with an existing 
method of smartphone PIN prediction such as [1] 
[2] [3] and [4] for boosting classification accuracy 
and reliability.  

 Either the victim’s smartphone or smartwatch is 
able to send data (< 100KB in total size) via the 
internet to the attacker servers for analysis. 

 The malicious software will be installed onto the 
victim’s smartwatch, perhaps disguised as a 
harmless smartwatch application.  

For Android devices, the use of the accelerometer 
and gyroscope does not require permission from 
the user [5]. 

 The attacker can determine the approximate time 
interval at which the user is entering a PIN onto 
the smartwatch. This event can be detected 
utilizing a classification algorithm to approximate 
the time interval for the handling of the phone 
during PIN entry. 

In conducting this analysis, a random forest 
classifier is used to infer the tapped PINs based off 
of the unlabeled sensor data collected from the 
smartwatch during a certain interval of time where 
the user has tapped the screen for PIN entry. 

III. RELATED WORK 

Previous work has examined the leakage of sensitive data 
via side-channel attacks on mobile devices that access the GPS 
and other location sensors [6], the camera [7], bioimpedance 
differences between people [8], and the movement of the 
phone from taps [2]. More recently, researchers have looked at 
using the pervasiveness of the mobile device to determine 
environmental information, notably using smartphone’s 
microphone [9] and accelerometer [10]. 

Specifically, in terms of using motion sensors on the 
smartphone, TouchLogger achieved 70% accuracy in inference 
of the number pad on a smartphone using motion and 
orientation side channel attacks [3]. ACCessory was able to 
crack six character passwords using only the accelerometer of 
the phone [4]. Trojan software designed by the authors of 
TapLogger was able to classify a user’s activity, often with 
more than 90% accuracy, on the number pad of a smartphone 
using the onboard accelerometer and gyroscope [2]. A more 
recent study [11] was conducted to demonstrate the feasibility 
of capturing keystrokes using smartwatch motion. 

To the best of our knowledge this is the first work looking 
at smartphone PIN detection using user-worn smartwatches. 
Wrist-mounted sensors and/or smartwatch gesture 
classification has been used previously in other applications, 
such as for smoking gesture detection [12] and gestured 
alphabetic character classification [13]. 

IV. DATA COLLECTION 

Approximately 100,000 sensor records were collected with 
a single user for a 2-3 minute session across 21 sessions. The 
user wore the smartwatch on the left hand while holding the 
smartphone in the left hand while sitting down. The left thumb 
was used for the typing on the smartphone numeric pin pad. 
The smartphone application used in the testing shown in Figure 
2 simulates a typical Android smartphone PIN layout. A 
Samsung Galaxy S5 smartphone paired alongside a Samsung 
Galaxy Gear Live smartwatch were used in all the data 
collection. 

 

Fig. 2: A screen shot of the Android application PIN entry 
screen used for the data collection. 

To avoid iterating through all 10,000 possible combinations 
with a 4-digit PIN, the following number sequences were 
tapped to cover all possible PIN pairs: (1,1), (1,2), (1,3), … , 
(1,8), (1,9), (1,0), (2,1), (2,2), … , (2,9), (2,0), (3,1), … , (3,0), 
… , (0,9), (0,0). Each tuple represents two taps in order, and 
each tuple is followed by the previous tuple sequence. For 
example, the first 6 labels tapped are 1, 1, 1, 2, 1, 3. 

This method ensures that all label taps are gathered with all 
possible following and prior labels. The sensors are thus 
gathering the change in motion for all possible PIN 
combinations with 100 unique tuples. The result of one 



collection of the full set of tuples is about 200 taps (with 
minimal human error missing a few taps and including some 
extra taps). 

A total of 21 datasets were gathered with a few including 
up to 3 iterations of the cycle of tuples and with the majority 
with 1 cycle. 

The data gathered directly from the smartwatch included 
the x,y, and z-axes of the accelerometer (without gravity),  x,y, 
and z-axes of the gyroscope, and x,y, and z-axes of the rotation 
vector. Both the smartwatch and smartphone were programmed 
to collect timestamp data: the smartphone to collect the times 
of pressing and releasing labels, and the smartwatch for each 
recorded sensor reading. 

The smartwatch sensor data was transmitted to the 
smartphone and written into CSV files at the touch of the ”OK” 
button. The attack model thus assumes that the malicious 
software can detect the approximate beginning and end of the 
PIN entry to cut off extra noise. The sensors were sampled at 
rate of 0.5KHz, with samples collected at approximately 20-30 
records on average per tap, or in other words 80-120 records in 
a 4-tap interval. 

V. FEATURE SELECTION 

The method for collecting data to train the classifier 
involved collecting sensor data from the smartwatch and the 
label data from the smartphone. The sets of data were merged 
in such a way that the labels of the smartphone were applied to 
the records of the smartwatch by matching the timestamp 
interval of the user’s taps. The labeling also included a null 
state denoted as -1 to indicate sensor readings during periods 
without taps i.e. the time interval between one tap and another. 

TABLE I: FEATURES EXPLORED FOR PIN VALUE CLASSIFICATION 

 
 

As shown in Figure 3, using random forest tree feature 
selection, the most important features in the dataset for 
predicting the class labels were the original sensor values. The 

feature sets were tested separately to compare the results of the 
full feature set versus the subset of features chosen by the 
random forest selection. Table II shows the performance of the 
models for comparison. 

Further features were created from the original dataset to 
include the changes in values across each axis of each sensor 
reading, the magnitude of each sensor reading, and the product 
of each possible pair of magnitudes. The final column space 
included the features listed in Table I. 

 
Fig. 3: Random forest tree feature importance and selection 

 

VI. APPROACH 

A. Model Selection 

Although several models were examined, the random forest 
classifier proved to have the best performance across the 
datasets for accuracy, precision, and recall. The classifier was 
trained with 150 trees using entropy as the criterion for 
information gain, and was tested with 5-fold cross validation to 
ensure against overfitting. 

It was shown, as in the tree selection Table II, that the best 
feature set excluded the delta and product creations. The final 
model thus excluded those features in PIN predictions. 

The model was further improved by applying the Savitzky-
Golay filter to the dataset for noise reduction. The classifier 
was trained on both the original sensor data and the filtered 
data to examine the differences in performance. The model’s 
precision score as shown in Table III was improved after 
filtering, and so the method of smoothing was adopted for PIN 
prediction. 

 

 

 

 

 

 

 



TABLE II. RANDOM FOREST CLASSIFICATION MODEL PERFORMANCE USING 

150 TREES FOR BOTH FILTERED AND NON-FILTERED DATASETS, AND FOR FULL-
FEATURES AND SELECTED-FEATURES. TESTED WITH 5-FOLD CROSS-
VALIDATION. 

 

TABLE III. PIN PREDICTION RESULTS FROM RUNNING 100 TRIALS AT 5 TIMES 

FOR EACH DATASET, WITHOUT DELTA OR PRODUCT FEATURES. TESTED WITH 

5-FOLD CROSS-VALIDATION. 

 

B. Pin Prediction 

Due to the large class imbalance between the active states 
(labels 0-9) and the null state (non-tap event), classification of 
the states often results in many more predictions of the null 
state than any other active state. This outcome was utilized as 
an advantage for the PIN prediction process. By predicting 
labels for each sensor reading (as opposed to a sequence), we 
discovered a redundant logic in the classification that boosted 
prediction accuracy. By randomly selecting an interval of 4 
taps (a typical PIN) from the dataset, we were able to make 
predictions on each sensor reading. The result appeared as a list 
of about 120 class label predictions (about 30 data points 
during the interval of any single tap), and as expected there 
were many ’-1’ (null state) predictions. After removing the null 
state predictions, what was left was often a list of several 
repeating class label predictions. 

An example output after the removal of null state 
predictions is as follows: 

(1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 4, 4, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 2, 6, 6, 6, 6) 

By examining the mode of the quartiles, we can accurately 
predict the PIN for a 4-tap interval, even in the presence of 
errors. For example, the above list would have an output of (1,  
3, 5, 6) as the predicted PIN. This method works well because 
misclassifications often result in null states, as opposed to 
active states.  

C. Null-Active State Prediction 

An exploration was made into the question of whether the 
active (labels 0-9) and null (-1) states could be clustered, and 
whether such clustering would result in or provide an accurate 
method for predicting future labels on this binary measure. 

Using k-means clustering on a train-test split of the dataset 
(test size of 20% holdout), it was found to be the worst 
measure among several classifiers, alongside logistic 

regression at about a 50-50 chance of correctly classifying null 
or active state labels. 

 
Fig. 4: Original sensor data binary classification ROC plot for 

null-active state prediction. 

 

 
Fig. 5: Savitzky-Golay filtered binary classification ROC plot 

for null-active state prediction. 

 
The models were run on both the original dataset and for 

the filtered one to inspect the differences. As shown in Figures 
4 and 5, the receiver operating curve (ROC) plots show the 
accuracy of each model as the area under the curve (AUC) 
score, and their corresponding true positive and false positive 
rates. The random forest classifier (150 trees using entropy as 
the criterion for information gain) performed the best, followed 
by the k-nearest neighbors classifier (5 neighbors). Although 
the k-nearest neighbors classifier did not perform well for PIN 
prediction, it is useful for such binary classifications. 

The final model did not rely on the use of the binary 
classification as the probability for correct classification 
through two models of first classifying null-active and then 
classifying within the active states was lower than simply using 
a single classifier on the full class-selection range. The final 
model was chosen as the random forest classifier, trained to 
classify across all states.  



VII. RESULTS 

Using the random forest model as a form of feature 
selection (see Figure 3), we found that the acceleration in the x-
axis of the smartwatch proved to be the most relevant feature 
for predicting class labels. It further followed that the other 
accelerometer axes were all more valuable than the gyroscope 
sensor readings, which then followed the rotation vector. The 
creation of further features was not very helpful with boosting 
the performance of the model as seen in Table II. 

The model was also run with the first two principal 
components using principal component analysis (PCA), it 
however performed worse than the original feature set. It is 
worth noting that the random forest model demonstrated that 
the PCA features of the least importance among the full feature 
set, and thus was left out of the analysis. This paper relied on 
using PCA plots for visually representing the distinction 
between active and null states of the data, to find a way for 
better separation of the data points. The plots confirm the 
difficulty in separating the classes, but it also points to the 
difficulty in creating a more uniform dataset. Due to the bias 
gained from training from only one user’s wrist, the PCA plots 
show sets of clusters forming. In plots containing fewer 
concatenations of datasets, the clusters become more visible. 

The variance explained ratio given by the principal 
components (see Fig. 6) is expected, and typical for PCA. The 
majority of the variance (about 65%) can be explained with the 
first two principal components, so what we see in the PCA plot 
is the best visualization for separation. The resulting PIN 
predictions (Table III) shown for a single user’s wrist are 
optimistic as they overfit one user, and it is expected that the 
PCA plot for multiple users will contain fewer visible cluster 
separations and a more blurred separation between active and 
null states. 

The model was trained on the full dataset using a train-test 
split with a testing size of 20% using the random forest 
classifier (150 trees, entropy criterion). It was tested on each 
dataset individually by predicting 5 sets of 100 PINs. 

For each prediction, the model makes at most 5 unique 
guesses for the PIN to simulate a realistic password attack. The 
reasoning for this is that most devices are configured to lock 
the PIN entry screen at 5 incorrect guesses.  

The different guesses are created by examining the 
threshold for probabilities of class labels by the random forest 
classifier model. For each prediction, the model examines the 
probabilities for class label assignment across each label and 
appropriates the one with the highest value.  

For further guesses, the next-best probabilities are used to 
substitute the best predicted values. This way, if for one 
prediction, two class labels are differing by a small probability 
in the model, that prediction will be the one to swap to the 
next-best guess of a class label. This method preserves the 
confident guesses and swaps out the questionable ones, often 
resulting in success within 4 guesses. This process is taken in 
steps of incremental 10% threshold limit values until a unique 
new guess is created and tried. If the model fails to predict the 
PIN value correctly, it is returned as a 0 (otherwise a 1 for 
success). 

 
Fig. 6. PCA plot and PCA explained variance ratio for full 

feature set 

 
The results in Table III show the averages and standard 

deviation for these 5 sets, for both the original dataset and the 
filtered dataset. The scores represent percentage accuracy 
measures, and are a good reflection of the performance since 
many scores have low variance across the 5 tests. If for 
example the score is 0.90, then the model was able to on 
average predict 90 out of 100 PINs. 

For the majority of the datasets, the two models (unfiltered 
versus filtered) performed with similar accuracy given the 
range of uncertainty for each set. The interesting distinction of 
the Savitzky-Golay filtered model is that it tended to have 
greater accuracy for two datasets, 5 and 13, beyond the range 
of the standard deviation. It is a minor note, but reflective of 
the boosted precision of the cross-validated scores in Table II. 

The model was also tested on unseen data, with results 
showing poor classification. Due to the wide range of initial 
starting positions for the user, and the inherent differences in 
wrist motion from one session to another, the random forest 
classifier was not able to classify the data points correctly. This 
is likely due to the classifier not being trained on a particular 
motion before, which is very likely given that the user was 
only tested across 21 sessions. It is expected that in an 
extended study with a diverse user group and several million 
data points, the classifier would fare far better with unseen data 
classification. 

VIII. CONCLUSION 

In this paper, the feasibility of smartwatch motion sensor 
attacks to extract PINs entered on smartphones was 
demonstrated. We looked at the scenario where the user is 
wearing a smartwatch and holding a smartphone to enter 
sensitive numeric data. In a controlled scenario, at least 41% 
accuracy is achieved with the smartwatches’ motion sensors 
for PIN prediction within 5 guesses. 
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